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Abstract— Super-resolution algorithms produce a single high-
resolution image from a set of several, low-resolution images
of the desired scene. The low-resolution frames are shifted
differently with respect to the high resolution frame with subpixel
increments. This paper presents first a theoretical overview
of super-resolution algorithms. The most important methods,
namely, the iterative back-projection, projection onto convex sets,
and maximum a posteriori estimation are then compared within
the same framework of implementation.

I. INTRODUCTION

In many applications of remote sensing, images of high
resolution (HR) are required. Super-resolution (SR) achieves
this by combining several low-resolution images of the desired
scene. These LR images can be acquired either as a sequence
over time by the same sensor, or taken at the same time with
different sensors. A single HR image can then be constructed
only if the LR frames are shifted with respect to the HR grid
differently from each other and with sub-pixel increments.
Thus each LR frame contains unique information which cannot
be obtained from the other LR frames and this is exploited to
obtain a HR image.

II. PROBLEM STATEMENT

Consider a high-resolution image of size L1M1 ×
L2M2 written as a lexicographically ordered vector z =
[z1, z2, . . . , zN ]T , where N = L1M1L2M2. Note that z is
considered to be generated by sampling a continuous scene.
Let us also define N1 ≡ L1M1 and N2 ≡ L2M2.

If L1 and L2 represent the downsampling factors in the
x and y directions respectively, then each observed low-
resolution frame is of size M1 × M2. Let P be the number
of the available LR frames. In a similar manner, the kth
LR frame may be expressed in lexicographical notation as
yk = [ỹk1, ỹk2, . . . , ỹkM ]T , for k = 1, 2, . . . , P , where M =
M1M2. The complete set of the LR frames is denoted by
y = [yT

1 ,yT
2 , . . . ,yT

P ]T = [y1, y2, . . . , yPM ]T .
First, an observation model relating the LR frames to the

HR image should be formulated. The observed LR frames
are assumed to have been produced by geometric warping,
blurring, and uniform downsampling performed on the HR
image z. Moreover, each LR frame is typically corrupted
by additive Gaussian noise which is uncorrelated between
different LR frames. Thus, the kth LR frame may be written
as

yk = DBkTkz + nk, for k = 1, 2, . . . , P (1)

where Tk represents a warping matrix of size N × N which
models the motion that occurs during image acquisition, Bk

is an N × N blurring matrix which can be either linear
space invariant or linear space variant, and is caused by
optical system problems (such as imaging systems out of
focus, operating beyond the diffraction limit, suffering from
aberration, etc.), relative motion between the imaging system
and the imaged scene, and the point spread function (PSF) of
the LR sensor, D is an M ×N downsampling matrix which is
employed to generate aliased LR frames from the warped and
blurred HR image, and nk denotes a lexicographically ordered
M -dimensional noise field.

The observation model may be simplified as follows:

yk = Wkz + nk, for k = 1, 2, . . . , P (2)

where Wk ≡ DBkTk is an M × N matrix.
Note that the above-mentioned imaging model assumes that

the HR image z remains constant during the acquisition of the
LR frames, except for any motion described by the warping
matrix Tk. Therefore, wkmr are functions of the motion
parameters of each LR pixel relative to the fixed HR grid.
In consequence, (2) may be rewritten as

ỹkm =
N∑

r=1

wkmr(sk)zr + nkm (3)

where ỹkm is the value of the mth pixel of the kth LR
frame, and vector sk ≡ [sk1, sk2, . . . , skQ]T encompasses
the Q registration parameters for the kth LR frame with
the coordinate system of the HR image. In practice, the
motion parameters are not often known a priori and should
be estimated along with the HR image z.

III. SUPER-RESOLUTION METHODS

SR reconstruction techniques can be employed in the spatial
or frequency domain. Spatial domain algorithms allow more
flexibility in incorporating a priori constraints, noise models,
and spatially varying degradation models. We compare here 3
spatial domain methods.

A typical SR image reconstruction algorithm consists of
three stages, namely, registration, interpolation and restoration.
These steps can be performed independently or simultaneously
depending on the approach taken. Registration refers to the es-
timation of the relative shifts of each LR frame with respect to
a reference LR image with subpixel accuracy. Since the shifts
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between LR images are arbitrary, non-uniform interpolation
is required to obtain a uniformly spaced HR image. Finally,
image restoration is applied to the upsampled image to remove
blurring and noise.

A. Iterative Backprojection (IBP)

Given an estimate of the HR image and a model of the
imaging process, a set of simulated LR frames is generated.
These simulated LR frames are then compared with the
observed LR frames. The difference (error) between the two
sets is used to correct the estimate of the HR image. The
process is repeated iteratively until some stopping criterion is
met, such as the minimization of the energy of the error, or
until the maximum number of allowed iterations is reached.
This method was formulated by Irani and Peleg [1], based on
the ideas presented in [2] and [3].

Note that the LR frames are registered with each other
to subpixel accuracy and an HR grid is defined in a certain
relative shift from all LR frames. The shifts are not updated
during the subsequent process which is aimed at defining
values for the pixels of the HR grid.

The method can be used to incorporate constraints, such as
smoothness or any other additional constraint which represents
a desired property of the solution. The method employs a
back-projection operator HBP . This can potentially affect
the solution to which the iterative algorithm converges. The
main practical weakness of the method lies exactly in the
choice of HBP , especially when a priori constraints should be
included. In addition, only linear constraints can be considered.
Thus, although the IBP based methods provide a mechanism
for constraining the SR reconstruction to conform with the
observation data, they cannot resolve the problem of non-
uniqueness. It can be proven that in the common case of a
real and symmetric point spread function (PSF) H, a possible
choice of HBP is HBP = H [2]. Irani and Peleg extend their
work in [4] by considering a more general motion model.

B. Projection Onto Convex Sets (POCS)

The most prominent feature of the POCS formulation is
the ease with which prior knowledge about the solution can
be incorporated into the reconstruction process. However, for
complex constraints the projection operators may be difficult
to compute.

Consider the following constraints which are imposed by
the complete set of the observed LR frames:

Cm1m2k = {z(n1, n2)|r(z)
k (m1,m2) ≤ δ0} (4)

1 ≤ m1 ≤ M1, 1 ≤ m2 ≤ M2, k = 1, 2, . . . , P

where

r
(z)
k (m1, m2) = yk(m1, m2)−

N1∑
n1=1

N2∑
n2=1

z(n1, n2)h(m1, m2; n1, n2)

(5)
z(n1, n2) denotes the (n1, n2)th HR pixel, yk(m1,m2) the
(m1,m2)th pixel of the kth LR frame, h the PSF function and
δ0 represents the uncertainty that we have in the observation.

Therefore, the residual r
(z)
k (m1,m2), which is actually the

observation noise nk, should be below the uncertainty level δ0

which can be set according to the noise statistics. So, Cm1m2k

is the set of possible solutions that make the value of pixel
(m1,m2) in the kth LR frame to differ by less than δ0 from
the observed value.

These constraints, which are also known as data consistency
constraints, are closed and convex, and define a feasible
solution z in the field of HR images for which the sensor
outputs are the observed LR frames. Each constraint is defined
for a single LR pixel, and thus there are M = M1M2 such
constraints for a single LR frame, and PM constraints for the
complete LR dataset.

According to [5], the projection of an arbitrary image
z(n1, n2) onto Cm1m2k is given in (6). If we enumerate pixels
(m1,m2) by a single index, the above projection may be
denoted as Piz where i takes values 1, 2, . . . , PM , with PM
being the total number of pixels in all LR available frames.
Then these projection operators have to be applied in turn
for all LR pixels. According to the fundamental theorem of
POCS, having PM data consistency constraints Cm1m2k for
the complete set of LR images, the sequence

z(n+1) = PPMPPM−1 . . .P2P1z(n) (7)

converges to the desired HR image z for an initial estimate
z(0). Note that the reached solution is in general non-unique
and depends on the initial guess. However, additional con-
straints may be imposed from prior knowledge to favor a
particular HR image. Moreover, they enable robust perfor-
mance in the presence of inconsistent or missing data. These
constraints may be amplitude constraints, energy constraints,
a reference image constraint, or a bounded support constraint.
The projection operators of these constraints are relatively easy
to formulate. More constraints may be defined in a similar
manner, and incorporated in the iterative sequence of (7).

As in the IBP method, the registration parameters of all LR
frames with respect to the HR grid and with respect to each
other are computed once and assumed known throughout the
whole process. The PSF which relates the HR pixels with the
LR pixels is also assumed to be known. Thus the purpose of
POCS is to assign values to the pixels of the HR grid.

C. Probabilistic Methods

According to this family of methods, the HR image z
and the registration parameters s are considered as random
fields described by the joint prior probability density function
P (z, s). The steps of a typical maximum a posteriori (MAP)
reconstruction method are described below. The task is to form
a joint MAP estimate of z and s given the observed LR frames
y. Then the estimates can be computed as

(ẑ, ŝ) = arg max
z,s

P (z, s | y) (8)

where P (z, s | y) is the joint posterior probability of z and s,
conditioned on the observed y.



Pm1m2k[z(n1, n2)] =

{ z(n1, n2) + r
(z)
k (m1,m2)−δ0∑

l1

∑
l2

h2(m1,m2;l1,l2)
h(m1,m2;n1, n2), if r

(z)
k (m1,m2) > δ0

z(n1, n2), if −δ0 < r
(z)
k (m1,m2) < δ0

z(n1, n2) + r
(z)
k (m1,m2)+δ0∑

l1

∑
l2

h2(m1,m2;l1,l2)
h(m1,m2;n1, n2), if r

(z)
k (m1,m2) < −δ0

(6)

Applying Bayes theorem, (8) may be rewritten as

(ẑ, ŝ) = arg max
z,s

P (y | z, s)P (z, s)
P (y)

(9)

Since z and s are statistically independent, P (z, s) =
P (z)P (s). Moreover, P (y) is not a function of z or s, so
it may be omitted from the optimization process with respect
to z and s. Therefore, the estimates are given by

(ẑ, ŝ) = arg max
z,s

P (y | z, s)P (z)P (s) (10)

Equivalently one aims to minimize the negative logarithm
of the function in (10). Thus

(ẑ, ŝ) = arg min
z,s

{− log[P (y | z, s)]− log[P (z)]− log[P (s)]}
(11)

Now we should determine the prior image probability den-
sity function (pdf) P (z), the prior motion probability density
function P (s), and the conditional probability density function
P (y|z, s).

The prior image pdf which preserves convexity, may be
expressed as

P (z) =
1
A

exp {−λf(z)} (12)

where A is some normalizing constant which ensures that P (z)
is a probability, λ is some positive constant, and f(z) is a
function of the values of the HR image z. This function may
be chosen to encourage neighboring pixels to have similar
values so that the first derivative of the HR image function is
continuous (the so called “membrane model”), or so that the
second derivative of the data is continuous (the so called “thin
plate model”).

The prior model for the registration parameters s is highly
application specific. In general, P (s) may be dropped from
the cost function, implying that we do not have any prior
knowledge about the registration parameters.

The elements of n in (2) are assumed to be independent and
identically distributed (iid) Gaussian samples with variance
σ2

n. Therefore, the multivariate pdf of n is given by:

P (n) =
1

(2π)
P M
2 σPM

n

exp

{
− 1

2σ2
n

PM∑
k=1

n2
k

}
(13)

Given the observation model in (2) and the noise pdf in
(13), the conditional pdf P (y|z, s) may be written as

P (y | z, s) =
1

(2π)
N
2 σN

n

exp
{
− 1

2σ2
n

(y − Wsz)T (y − Wsz)
}

(14)
The aim is to minimize the cost function (11) with respect

to z and s. Note that (11) is not readily differentiable with

respect to s for many motion models. In addition, depending
on the choice of f(z), (11) usually is a quadratic function in
z and can be minimized with respect to z if s is fixed. The
authors in [6] apply a cyclic coordinate-descent optimization
approach in which z is fixed and s estimated, and then s is
fixed and z is estimated. The iterative algorithm terminates
when it adequately converges or a pre-set number of iterations
is reached. The initial estimate ẑ1 may be an interpolation of
the first LR image.

The estimated LR images are compared with the HR esti-
mate ẑn after it is projected through the observation model.
The estimation of the registration parameters ŝn

k effectively
results in the estimation of the weights wn

km1m2n1n2
for the

nth iteration. Once we have updated all ŝn
k , we aim in updating

the HR image ẑ.

IV. EXPERIMENTS

A simulated sequence of random translational shifts is used
to generate a series of translated LR images (each of size
50× 50 pixels) from the 16 bit grayscale image shown in Fig
1(a). The camera is assumed to move so that all LR frames
it captures share the same image plane. In other words, no
zooming, paning, or tilting of the camera motion is allowed. To
simulate in practice such data, from each location we capture
a HR frame which we blur with PSF

h =

[ 0.05 0.1 0.05
0.1 0.4 0.05
0.05 0.1 0.05

]

and subsample by a factor of 4 in each direction. No noise is
added to each LR frame. The first LR frame in the generated
sequence is presented in Fig. 1(b).

The first LR frame is considered as the reference LR
frame. All LR frames are bilinearly interpolated to the desired
high resolution. The interpolated frames are now registered
to the SR grid, which has been set up by the interpolated
version of the LR reference frame, using normalized cross-
correlation. Thus we can accurately identify the translational
displacements.

The initial HR image estimate is the bilinearly interpolated
version of the first LR frame as shown in Fig. 1(c). For
each of the IBP, POCS, and MAP estimation algorithms,
20 iterations are performed. The estimated SR images are
presented respectively in Fig. 1(d)-1(f).

Fig. 2(a) depicts the mean absolute error (MAE) per pixel
for each method versus the number of iterations used to
estimate the SR image. POCS and MAP estimation are shown
to be consistently more effective in SR reconstruction than
IBP. For comparison, the MAE’s of the image formed by



(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Original image. (b) Simulated low-resolution frame 1 (L1 =
L2 = 4). (c) Bilinear interpolation of frame 1. (d) IBP: Super-resolution
image. (e) POCS: Super-resolution image. (f) MAP: Super-resolution image.
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Fig. 2. (a) Mean absolute error per pixel vs number of iterations using 16
frames. (b) Mean absolute error per pixel vs number of frames used for 10
iterations.

bilinear interpolation of a single LR frame is also shown. Fig.
2(b) shows the MAE per pixel for all three methods using
various numbers of LR frames. We can see that with only
four frames, the performance is comparable with that of the
bicubic interpolator. Increasing the number of the available LR
frames results in improved restoration. Note that 16 frames is
the minimum theoretical limit in order to solve the SR problem
with our data. The improvement is dramatic until this limit
is reached when using POCS and MAP estimation methods.
Additional frames improve only slightly the SR image.

The computational cost of the algorithms is rather high for
real time implementation. For a reconstruction of an image
with 200× 200 pixels from 16 frames of 50× 50 pixels each,
approximately 10 iterations are needed. The Matlab code used
required 3.85s, 4.61s and 6.67s per iteration for the POCS,
MAP, and IBP algorithms respectively.

Next we examine the tolerance to registration errors. We
compute the HR image using each of the three methods
for various levels of misregistration (see Fig. 3). Of the
three methods compared, the IBP approach showed the most
resilience to misregistration errors. POCS and MAP are quite
sensitive to registration errors, with POCS being a little more

sensitive than MAP. However, both techniques are clearly
superior compared with IBP when registration is successful.
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Fig. 3. Mean absolute error per pixel vs mean registration error in units of
HR pixels.

In practice, POCS and MAP are comparable in terms of
speed and performance. They result in sufficient reconstruction
of the desired HR image with a small number of iterations.
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